Digitizing woven fabrics would be valuable for many applications, from digital humans to interior design. Previous work introduces a lightweight woven fabric acquisition approach by capturing a single reflection image and estimating the fabric parameters with a differentiable geometric and shading model. The renderings of the estimated fabric parameters can closely match the photo; however, the captured reflection image is insufficient to fully characterize the fabric sample reflectance. For instance, fabrics with different thicknesses might have similar reflection images but lead to significantly different transmission. We propose to recover the woven fabric parameters from two captured images: reflection and transmission. At the core of our method is a differentiable bidirectional scattering distribution function (BSDF) model, handling reflection and transmission, including single and multiple scattering. We propose a two-layer model, where the single scattering uses an SGGX phase function as in previous work, and multiple scattering uses a new azimuthally-invariant microflake definition, which we term ASGGX. This new fabric BSDF model closely matches real woven fabrics in both reflection and transmission. We use a simple setup for capturing reflection and transmission photos with a cell phone camera and two point lights, and estimate the fabric parameters via a lightweight network, together with a differentiable optimization. We also model the out-of-focus effects explicitly with a simple solution to match the thin-lens camera better. As a result, the renderings of the estimated parameters can agree with the input images on both reflection and transmission for the first time. The code for this paper is at https://github.com/lxtyin/FabricBTDF-Recovery.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
15+阅读 · 2021年6月27日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员