Folklore in complexity theory suspects that circuit lower bounds against $\mathbf{NC}^1$ or $\mathbf{P}/\operatorname{poly}$, currently out of reach, are a necessary step towards proving strong proof complexity lower bounds for systems like Frege or Extended Frege. Establishing such a connection formally, however, is already daunting, as it would imply the breakthrough separation $\mathbf{NEXP} \not\subseteq \mathbf{P}/\operatorname{poly}$, as recently observed by Pich and Santhanam (2023). We show such a connection conditionally for the Implicit Extended Frege proof system ($\mathsf{iEF}$) introduced by Kraj\'i\v{c}ek (The Journal of Symbolic Logic, 2004), capable of formalizing most of contemporary complexity theory. In particular, we show that if $\mathsf{iEF}$ proves efficiently the standard derandomization assumption that a concrete Boolean function is hard on average for subexponential-size circuits, then any superpolynomial lower bound on the length of $\mathsf{iEF}$ proofs implies $\#\mathbf{P} \not\subseteq \mathbf{FP}/\operatorname{poly}$ (which would in turn imply, for example, $\mathbf{PSPACE} \not\subseteq \mathbf{P}/\operatorname{poly}$). Our proof exploits the formalization inside $\mathsf{iEF}$ of the soundness of the sum-check protocol of Lund, Fortnow, Karloff, and Nisan (Journal of the ACM, 1992). This has consequences for the self-provability of circuit upper bounds in $\mathsf{iEF}$. Interestingly, further improving our result seems to require progress in constructing interactive proof systems with more efficient provers.


翻译:暂无翻译

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员