Automated Machine Learning (AutoML) automatically builds machine learning (ML) models on data. The de facto standard for evaluating new AutoML frameworks for tabular data is the AutoML Benchmark (AMLB). AMLB proposed to evaluate AutoML frameworks using 1- and 4-hour time budgets across 104 tasks. We argue that shorter time constraints should be considered for the benchmark because of their practical value, such as when models need to be retrained with high frequency, and to make AMLB more accessible. This work considers two ways in which to reduce the overall computation used in the benchmark: smaller time constraints and the use of early stopping. We conduct evaluations of 11 AutoML frameworks on 104 tasks with different time constraints and find the relative ranking of AutoML frameworks is fairly consistent across time constraints, but that using early-stopping leads to a greater variety in model performance.


翻译:自动化机器学习(AutoML)能够基于数据自动构建机器学习模型。当前评估表格数据AutoML框架的事实标准是自动化机器学习基准测试(AMLB)。AMLB提出在104个任务上分别以1小时和4小时的时间预算评估AutoML框架。我们认为,考虑到实际应用价值(例如需要高频重训练模型的场景)以及提升AMLB的可及性,基准测试应当纳入更短的时间约束。本研究探讨了两种降低基准测试总体计算量的方法:缩短时间约束与采用早停策略。我们在104个任务上对11个AutoML框架进行了不同时间约束下的评估,发现各框架的相对排名在不同时间约束下保持较高一致性,但采用早停策略会导致模型性能出现更大差异。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
13+阅读 · 2022年4月12日
VLP: A Survey on Vision-Language Pre-training
Arxiv
11+阅读 · 2022年2月21日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员