The $N$-sum box protocol specifies a class of $\mathbb{F}_d$ linear functions $f(W_1,\cdots,W_K)=V_1W_1+V_2W_2+\cdots+V_KW_K\in\mathbb{F}_d^{m\times 1}$ that can be computed at information theoretically optimal communication cost (minimum number of qudits $\Delta_1,\cdots,\Delta_K$ sent by the transmitters Alice$_1$, Alice$_2$,$\cdots$, Alice$_K$, respectively, to the receiver, Bob, per computation instance) over a noise-free quantum multiple access channel (QMAC), when the input data streams $W_k\in\mathbb{F}_d^{m_k\times 1}, k\in[K]$, originate at the distributed transmitters, who share quantum entanglement in advance but are not otherwise allowed to communicate with each other. In prior work this set of optimally computable functions is identified in terms of a strong self-orthogonality (SSO) condition on the transfer function of the $N$-sum box. In this work we consider an `inverted' scenario, where instead of a feasible $N$-sum box transfer function, we are given an arbitrary $\mathbb{F}_d$ linear function, i.e., arbitrary matrices $V_k\in\mathbb{F}_d^{m\times m_k}$ are specified, and the goal is to characterize the set of all feasible communication cost tuples $(\Delta_1,\cdots,\Delta_K)$, not just based on $N$-sum box protocols, but across all possible quantum coding schemes. As our main result, we fully solve this problem for $K=3$ transmitters ($K\geq 4$ settings remain open). Coding schemes based on the $N$-sum box protocol (along with elementary ideas such as treating qudits as classical dits, time-sharing and batch-processing) are shown to be information theoretically optimal in all cases. As an example, in the symmetric case where rk$(V_1)$=rk$(V_2)$=rk$(V_3) \triangleq r_1$, rk$([V_1, V_2])$=rk$([V_2, V_3])$=rk$([V_3, V_1])\triangleq r_2$, and rk$([V_1, V_2, V_3])\triangleq r_3$ (rk = rank), the minimum total-download cost is $\max \{1.5r_1 + 0.75(r_3 - r_2), r_3\}$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
70+阅读 · 2022年6月30日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Anomalous Instance Detection in Deep Learning: A Survey
UNITER: Learning UNiversal Image-TExt Representations
Arxiv
23+阅读 · 2019年9月25日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关论文
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员