Tuberculosis (TB) remains a formidable global health challenge, driven by complex spatiotemporal transmission dynamics and influenced by factors such as population mobility and behavioral changes. We propose an Epidemic-Guided Deep Learning (EGDL) approach that fuses mechanistic epidemiological principles with advanced deep learning techniques to enhance early warning systems and intervention strategies for TB outbreaks. Our framework is built upon a networked Susceptible-Infectious-Recovered (SIR) model augmented with a saturated incidence rate and graph Laplacian diffusion, capturing both long-term transmission dynamics and region-specific population mobility patterns. Compartmental model parameters are rigorously estimated using Bayesian inference via the Markov Chain Monte Carlo (MCMC) approach. Theoretical analysis leveraging the comparison principle and Green's formula establishes global stability properties of the disease-free and endemic equilibria. Building on these epidemiological insights, we design two forecasting architectures, EGDL-Parallel and EGDL-Series, that integrate the mechanistic outputs of the networked SIR model within deep neural networks. This integration mitigates the overfitting risks commonly encountered in data-driven methods and filters out noise inherent in surveillance data, resulting in reliable forecasts of real-world epidemic trends. Experiments conducted on TB incidence data from 47 prefectures in Japan demonstrate that our approach delivers robust and accurate predictions across multiple time horizons (short to medium-term forecasts). Additionally, incorporating uncertainty quantification through conformal prediction enhances the model's practical utility for guiding targeted public health interventions.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Optimization for deep learning: theory and algorithms
Arxiv
106+阅读 · 2019年12月19日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员