Semantic Embedding Models (SEMs) have become a core component in information retrieval and natural language processing due to their ability to model semantic relevance. However, despite its growing applications in search engines, few studies have systematically explored how to construct effective training data for SEMs from large-scale search engine query logs. In this paper, we present a comprehensive analysis of strategies for generating pairwise judgments as SEM training data. An interesting (perhaps surprising) discovery reveals that conventional formulation approaches used in Learning-to-Rank (LTR) are not necessarily optimal for SEM training. Through a large-scale empirical study using query logs and click-through data from a major search engine, we identify effective strategies and demonstrate the advantages of a proposed hybrid heuristic over simpler atomic heuristics. Finally, we provide best practices for SEM training and outline directions for future research.


翻译:语义嵌入模型(SEMs)因其建模语义相关性的能力,已成为信息检索和自然语言处理的核心组件。然而,尽管其在搜索引擎中的应用日益广泛,但很少有研究系统地探讨如何从大规模搜索引擎查询日志中为SEMs构建有效的训练数据。本文对生成成对判断作为SEM训练数据的策略进行了全面分析。一个有趣(或许令人惊讶)的发现表明,学习排序(LTR)中使用的传统构建方法对于SEM训练未必是最优的。通过利用来自主流搜索引擎的查询日志和点击数据开展大规模实证研究,我们识别出有效的策略,并证明了所提出的混合启发式方法相较于简单原子启发式的优势。最后,我们提供了SEM训练的最佳实践,并展望了未来的研究方向。

0
下载
关闭预览

相关内容

互联网
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
语料库构建——自然语言理解的基础
计算机研究与发展
11+阅读 · 2017年8月21日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
VIP会员
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
语料库构建——自然语言理解的基础
计算机研究与发展
11+阅读 · 2017年8月21日
相关基金
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员