In this work we study Invertible Bloom Lookup Tables (IBLTs) with small failure probabilities. IBLTs are highly versatile data structures that have found applications in set reconciliation protocols, error-correcting codes, and even the design of advanced cryptographic primitives. For storing $n$ elements and ensuring correctness with probability at least $1 - \delta$, existing IBLT constructions require $\Omega(n(\frac{\log(1/\delta)}{\log(n)}+1))$ space and they crucially rely on fully random hash functions. We present new constructions of IBLTs that are simultaneously more space efficient and require less randomness. For storing $n$ elements with a failure probability of at most $\delta$, our data structure only requires $\mathcal{O}\left(n + \log(1/\delta)\log\log(1/\delta)\right)$ space and $\mathcal{O}\left(\log(\log(n)/\delta)\right)$-wise independent hash functions. As a key technical ingredient we show that hashing $n$ keys with any $k$-wise independent hash function $h:U \to [Cn]$ for some sufficiently large constant $C$ guarantees with probability $1 - 2^{-\Omega(k)}$ that at least $n/2$ keys will have a unique hash value. Proving this is non-trivial as $k$ approaches $n$. We believe that the techniques used to prove this statement may be of independent interest. We apply our new IBLTs to the encrypted compression problem, recently studied by Fleischhacker, Larsen, Simkin (Eurocrypt 2023). We extend their approach to work for a more general class of encryption schemes and using our new IBLT we achieve an asymptotically better compression rate.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员