This paper develops a general framework for estimation of high-dimensional conditional factor models via nuclear norm regularization. We establish large sample properties of the estimators, and provide an efficient computing algorithm for finding the estimators as well as a cross validation procedure for choosing the regularization parameter. The general framework allows us to estimate a variety of conditional factor models in a unified way and quickly deliver new asymptotic results. We apply the method to analyze the cross section of individual US stock returns, and find that imposing homogeneity may improve the model's out-of-sample predictability.


翻译:本文为通过核规范规范化来估计高维有条件要素模型制定了一个总体框架。 我们建立了测量者的大量样本属性,并为寻找估算者提供了高效的计算算法,并为选择规范化参数提供了一个交叉验证程序。 总体框架使我们能够以统一的方式估算各种有条件要素模型,并迅速提供新的零星结果。 我们运用了分析单个美国股票回报跨部分的方法,发现强制同质性可能会改善模型的外表可预测性。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员