The development of automated experimental facilities and the digitization of experimental data have introduced numerous opportunities to radically advance chemical laboratories. As many laboratory tasks involve predicting and understanding previously unknown chemical relationships, machine learning (ML) approaches trained on experimental data can substantially accelerate the conventional design-build-test-learn process. This outlook article aims to help chemists understand and begin to adopt ML predictive models for a variety of laboratory tasks, including experimental design, synthesis optimization, and materials characterization. Furthermore, this article introduces how artificial intelligence (AI) agents based on large language models can help researchers acquire background knowledge in chemical or data science and accelerate various aspects of the discovery process. We present three case studies in distinct areas to illustrate how ML models and AI agents can be leveraged to reduce time-consuming experiments and manual data analysis. Finally, we highlight existing challenges that require continued synergistic effort from both experimental and computational communities to address.


翻译:自动化实验设施的发展和实验数据的数字化为化学实验室的根本性进步带来了诸多机遇。由于许多实验室任务涉及预测和理解先前未知的化学关系,基于实验数据训练的机器学习方法能够显著加速传统的设计-构建-测试-学习循环。本展望文章旨在帮助化学研究者理解并开始将机器学习预测模型应用于各类实验室任务,包括实验设计、合成优化与材料表征。此外,本文介绍了基于大语言模型的人工智能助手如何帮助研究者获取化学或数据科学领域的背景知识,并加速发现流程的多个环节。我们通过三个不同领域的案例研究,阐明如何利用机器学习模型与人工智能助手来减少耗时的实验操作与人工数据分析。最后,我们强调了当前存在的挑战,这些挑战需要实验与计算科学界持续开展协同攻关方能解决。

0
下载
关闭预览

相关内容

人工智能杂志AI(Artificial Intelligence)是目前公认的发表该领域最新研究成果的主要国际论坛。该期刊欢迎有关AI广泛方面的论文,这些论文构成了整个领域的进步,也欢迎介绍人工智能应用的论文,但重点应该放在新的和新颖的人工智能方法如何提高应用领域的性能,而不是介绍传统人工智能方法的另一个应用。关于应用的论文应该描述一个原则性的解决方案,强调其新颖性,并对正在开发的人工智能技术进行深入的评估。 官网地址:http://dblp.uni-trier.de/db/journals/ai/
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
69+阅读 · 2022年9月7日
Arxiv
11+阅读 · 2018年7月31日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员