We present a novel, global algorithm for solving polynomial multiparameter eigenvalue problems (PMEPs) by leveraging a hidden variable tensor Dixon resultant framework. Our method transforms a PMEP into one or more univariate polynomial eigenvalue problems, which are solved as generalized eigenvalue problems. Our general approach avoids the need for custom linearizations of PMEPs. We provide rigorous theoretical guarantees for generic PMEPs and give practical strategies for nongeneric systems. Benchmarking on applications from aeroelastic flutter and leaky wave propagation confirms that our algorithm attains high accuracy and robustness while being broadly applicable to many PMEPs.


翻译:本文提出了一种新颖的全局算法,用于求解多项式多参数特征值问题(PMEPs),其核心在于利用隐变量张量Dixon结式框架。该方法将PMEP转化为一个或多个单变量多项式特征值问题,并作为广义特征值问题进行求解。我们的通用方法避免了为PMEPs定制线性化方案的需要。我们为一般性PMEPs提供了严格的理论保证,并针对非一般性系统给出了实用的求解策略。在气动弹性颤振和漏波传播等应用上的基准测试证实,该算法在广泛适用于多种PMEPs的同时,实现了高精度与强鲁棒性。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员