We derive entropy factorization estimates for spin systems using the stochastic localization approach proposed by Eldan and Chen-Eldan, which, in this context, is equivalent to the renormalization group approach developed independently by Bauerschmidt, Bodineau, and Dagallier. The method provides approximate Shearer-type inequalities for the corresponding Gibbs measure at sufficiently high temperature, without restrictions on the degree of the underlying graph. For Ising systems, these are shown to hold up to the critical tree-uniqueness threshold, including polynomial bounds at the critical point, with optimal $O(\sqrt n)$ constants for the Curie-Weiss model at criticality. In turn, these estimates imply tight mixing time bounds for arbitrary block dynamics or Gibbs samplers, improving over existing results. Moreover, we establish new tensorization statements for the Shearer inequality asserting that if a system consists of weakly interacting but otherwise arbitrary components, each of which satisfies an approximate Shearer inequality, then the whole system also satisfies such an estimate.


翻译:我们利用Eldan以及Chen-Eldan提出的随机局部化方法,推导了自旋系统的熵因子化估计。在此背景下,该方法等价于Bauerschmidt、Bodineau和Dagallier独立发展的重整化群方法。该方法为足够高温下对应的吉布斯测度提供了近似的Shearer型不等式,且不受底层图度数的限制。对于伊辛系统,这些不等式被证明在临界树唯一性阈值以下均成立,包括临界点的多项式界,且在临界Curie-Weiss模型中具有最优的$O(\sqrt n)$常数。反过来,这些估计意味着任意块动力学或吉布斯采样器的紧致混合时间界,改进了现有结果。此外,我们为Shearer不等式建立了新的张量化陈述:如果一个系统由弱相互作用但其他方面任意的组件构成,且每个组件都满足一个近似的Shearer不等式,则整个系统也满足这样的估计。

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
VIP会员
相关VIP内容
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员