Table-based question answering requires complex reasoning capabilities that current LLMs struggle to achieve with single-pass inference. Existing approaches, such as Chain-of-Thought reasoning and question decomposition, lack error detection mechanisms and discard problem-solving experiences, contrasting sharply with how humans tackle such problems. In this paper, we propose MAPLE (Multi-agent Adaptive Planning with Long-term mEmory), a novel framework that mimics human problem-solving through specialized cognitive agents working in a feedback-driven loop. MAPLE integrates 4 key components: (1) a Solver using the ReAct paradigm for reasoning, (2) a Checker for answer verification, (3) a Reflector for error diagnosis and strategy correction, and (4) an Archiver managing long-term memory for experience reuse and evolution. Experiments on WiKiTQ and TabFact demonstrate significant improvements over existing methods, achieving state-of-the-art performance across multiple LLM backbones.


翻译:基于表格的问答任务需要复杂的推理能力,而当前大型语言模型通过单次推理难以实现这一目标。现有方法(如思维链推理和问题分解)缺乏错误检测机制,且丢弃了问题解决经验,这与人类处理此类问题的方式形成鲜明对比。本文提出MAPLE(基于长期记忆的多智能体自适应规划框架),这是一种通过专业认知智能体在反馈驱动循环中协作、模拟人类问题解决过程的新颖框架。MAPLE整合了四个关键组件:(1)采用ReAct范式进行推理的求解器,(2)用于答案验证的检查器,(3)进行错误诊断与策略修正的反思器,以及(4)管理长期记忆以实现经验复用与演化的归档器。在WiKiTQ和TabFact数据集上的实验表明,该方法相比现有技术取得显著提升,并在多种大型语言模型基座上实现了最先进的性能。

0
下载
关闭预览

相关内容

自动问答(Question Answering, QA)是指利用计算机自动回答用户所提出的问题以满足用户知识需求的任务。不同于现有搜索引擎,问答系统是信息服务的一种高级形式,系统返回用户的不再是基于关键词匹配排序的文档列表,而是精准的自然语言答案。近年来,随着人工智能的飞速发展,自动问答已经成为倍受关注且发展前景广泛的研究方向。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
Top
微信扫码咨询专知VIP会员