The growing demand for real-time processing in artificial intelligence applications, particularly those involving Convolutional Neural Networks (CNNs), has highlighted the need for efficient computational solutions. Conventional processors, very often, fall short in balancing performance, power consumption, and latency, especially in embedded systems and edge computing platforms. Field-Programmable Gate Arrays (FPGAs) offer a promising alternative, combining high performance with energy efficiency and reconfigurability. The presented framework addresses the complex and demanding computations of CNNs on FPGAs maintaining full precision in all neural network parameters. Specifically, our framework is based on Darknet which is very widely used for the design of CNNs and allows the designer, by using a similar input to that given to Darknet, to efficiently implement a CNN in a heterogeneous system comprising of CPUs and FPGAs. When compared with the FPGA frameworks that support quantization, our solution aims to offer similar performance and/or energy efficiency without any degradation on the NN accuracy.


翻译:人工智能应用中对实时处理的需求日益增长,特别是涉及卷积神经网络(CNN)的应用,突显了对高效计算解决方案的需求。传统处理器往往难以在性能、功耗和延迟之间取得平衡,尤其是在嵌入式系统和边缘计算平台中。现场可编程门阵列(FPGA)提供了一种有前景的替代方案,兼具高性能、高能效和可重构性。本文提出的框架旨在解决FPGA上CNN复杂且计算密集的任务,同时保持所有神经网络参数的完整精度。具体而言,我们的框架基于广泛用于CNN设计的Darknet,允许设计者通过使用与Darknet相似的输入,在包含CPU和FPGA的异构系统中高效实现CNN。与支持量化的FPGA框架相比,我们的解决方案旨在提供相近的性能和/或能效,且不降低神经网络的精度。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
29+阅读 · 2022年3月28日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员