"Toeplitzification" or "redundancy (spatial) averaging", the well-known routine for deriving the Toeplitz covariance matrix estimate from the standard sample covariance matrix, recently regained new attention due to the important Random Matrix Theory (RMT) findings. The asymptotic consistency in the spectral norm was proven for the Kolmogorov's asymptotics when the matrix dimension N and independent identically distributed (i.i.d.) sample volume T both tended to infinity (N->inf, T->inf, T/N->c > 0). These novel RMT results encouraged us to reassess the well-known drawback of the redundancy averaging methodology, which is the generation of the negative minimal eigenvalues for covariance matrices with big eigenvalues spread, typical for most covariance matrices of interest. We demonstrate that for this type of Toeplitz covariance matrices, convergence in the spectral norm does not prevent the generation of negative eigenvalues, even for the sample volume T that significantly exceeds the covariance matrix dimension (T >> N). We demonstrate that the ad-hoc attempts to remove the negative eigenvalues by the proper diagonal loading result in solutions with the very low likelihood. We demonstrate that attempts to exploit Newton's type iterative algorithms, designed to produce a Hermitian Toeplitz matrix with the given eigenvalues lead to the very poor likelihood of the very slowly converging solution to the desired eigenvalues. Finally, we demonstrate that the proposed algorithm for restoration of a positive definite (p.d.) Hermitian Toeplitz matrix with the specified Maximum Entropy spectrum, allows for the transformation of the (unstructured) Hermitian maximum likelihood (ML) sample matrix estimate in a p.d. Toeplitz matrix with sufficiently high likelihood.


翻译:暂无翻译

0
下载
关闭预览

相关内容

在概率论和统计学中,协方差矩阵(也称为自协方差矩阵,色散矩阵,方差矩阵或方差-协方差矩阵)是平方矩阵,给出了给定随机向量的每对元素之间的协方差。 在矩阵对角线中存在方差,即每个元素与其自身的协方差。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员