The Good-Turing (GT) estimator for the missing mass (i.e., total probability of missing symbols) in $n$ samples is the number of symbols that appeared exactly once divided by $n$. For i.i.d. samples, the bias and squared-error risk of the GT estimator can be shown to fall as $1/n$ by bounding the expected error uniformly over all symbols. In this work, we study convergence of the GT estimator for missing stationary mass (i.e., total stationary probability of missing symbols) of Markov samples on an alphabet $\mathcal{X}$ with stationary distribution $[\pi_x:x \in \mathcal{X}]$ and transition probability matrix (t.p.m.) $P$. This is an important and interesting problem because GT is widely used in applications with temporal dependencies such as language models assigning probabilities to word sequences, which are modelled as Markov. We show that convergence of GT depends on convergence of $(P^{\sim x})^n$, where $P^{\sim x}$ is $P$ with the $x$-th column zeroed out. This, in turn, depends on the Perron eigenvalue $\lambda^{\sim x}$ of $P^{\sim x}$ and its relationship with $\pi_x$ uniformly over $x$. For randomly generated t.p.ms and t.p.ms derived from New York Times and Charles Dickens corpora, we numerically exhibit such uniform-over-$x$ relationships between $\lambda^{\sim x}$ and $\pi_x$. This supports the observed success of GT in language models and practical text data scenarios. For Markov chains with rank-2, diagonalizable t.p.ms having spectral gap $\beta$, we show minimax rate upper and lower bounds of $1/(n\beta^5)$ and $1/(n\beta)$, respectively, for the estimation of stationary missing mass. This theoretical result extends the $1/n$ minimax rate for i.i.d. or rank-1 t.p.ms to rank-2 Markov, and is a first such minimax rate result for missing mass of Markov samples.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
130+阅读 · 2023年1月29日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
VIP会员
相关VIP内容
【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
130+阅读 · 2023年1月29日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员