This paper presents a decentralized control framework for distribution matching in multi-agent systems (MAS), where agents collectively achieve a prescribed terminal spatial distribution. The problem is formulated using optimal transport (Wasserstein distance), which provides a principled measure of distributional discrepancy and serves as the basis for the control design. To avoid solving the global optimal transport problem directly, the distribution-matching objective is reformulated into a tractable per-agent decision process, enabling each agent to identify its desired terminal locations using only locally available information. A sequential weight-update rule is introduced to construct feasible local transport plans, and a memory-based correction mechanism is incorporated to maintain reliable operation under intermittent and range-limited communication. Convergence guarantees are established, showing cycle-wise improvement of a surrogate transport cost under both linear and nonlinear agent dynamics. Simulation results demonstrate that the proposed framework achieves effective and scalable distribution matching while operating fully in a decentralized manner.


翻译:本文提出了一种用于多智能体系统分布匹配的去中心化控制框架,其中智能体共同实现指定的终端空间分布。该问题采用最优传输(Wasserstein距离)进行建模,该度量提供了分布差异的原则性衡量,并作为控制设计的基础。为避免直接求解全局最优传输问题,分布匹配目标被重构为可处理的单智能体决策过程,使每个智能体仅利用局部可用信息即可确定其期望的终端位置。本文引入了一种顺序权重更新规则以构建可行的局部传输方案,并融合了一种基于记忆的校正机制,以确保在间歇性、距离受限的通信条件下维持可靠运行。理论分析建立了收敛性保证,表明在线性和非线性智能体动力学下,替代传输成本均能实现逐周期改进。仿真结果表明,所提框架在完全去中心化运行的同时,实现了高效且可扩展的分布匹配。

0
下载
关闭预览

相关内容

【ICLR2022】GNN-LM基于全局信息的图神经网络语义理解模型
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
【NeurIPS2019】图变换网络:Graph Transformer Network
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
【NeurIPS2019】图变换网络:Graph Transformer Network
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员