We put forth a principled design of a neural architecture to learn nodal Adjacency Spectral Embeddings (ASE) from graph inputs. By bringing to bear the gradient descent (GD) method and leveraging the principle of algorithm unrolling, we truncate and re-interpret each GD iteration as a layer in a graph neural network (GNN) that is trained to approximate the ASE. Accordingly, we call the resulting embeddings and our parametric model Learned ASE (LASE), which is interpretable, parameter efficient, robust to inputs with unobserved edges, and offers controllable complexity during inference. LASE layers combine Graph Convolutional Network (GCN) and fully-connected Graph Attention Network (GAT) modules, which is intuitively pleasing since GCN-based local aggregations alone are insufficient to express the sought graph eigenvectors. We propose several refinements to the unrolled LASE architecture (such as sparse attention in the GAT module and decoupled layerwise parameters) that offer favorable approximation error versus computation tradeoffs; even outperforming heavily-optimized eigendecomposition routines from scientific computing libraries. Because LASE is a differentiable function with respect to its parameters as well as its graph input, we can seamlessly integrate it as a trainable module within a larger (semi-)supervised graph representation learning pipeline. The resulting end-to-end system effectively learns ``discriminative ASEs'' that exhibit competitive performance in supervised link prediction and node classification tasks, outperforming a GNN even when the latter is endowed with open loop, meaning task-agnostic, precomputed spectral positional encodings.


翻译:暂无翻译

1
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
19+阅读 · 2021年1月14日
Arxiv
16+阅读 · 2019年4月4日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
19+阅读 · 2021年1月14日
Arxiv
16+阅读 · 2019年4月4日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员