Low rank inference on matrices is widely conducted by optimizing a cost function augmented with a penalty proportional to the nuclear norm $\Vert \cdot \Vert_*$. However, despite the assortment of computational methods for such problems, there is a surprising lack of understanding of the underlying probability distributions being referred to. In this article, we study the distribution with density $f(X)\propto e^{-\lambda\Vert X\Vert_*}$, finding many of its fundamental attributes to be analytically tractable via differential geometry. We use these facts to design an improved MCMC algorithm for low rank Bayesian inference as well as to learn the penalty parameter $\lambda$, obviating the need for hyperparameter tuning when this is difficult or impossible. Finally, we deploy these to improve the accuracy and efficiency of low rank Bayesian matrix denoising and completion algorithms in numerical experiments.


翻译:矩阵的低秩推断通常通过优化一个成本函数并加上与核范数 $\Vert \cdot \Vert_*$ 成比例的惩罚项来实现。然而,尽管针对此类问题存在多种计算方法,人们对所涉及的基础概率分布却惊人地缺乏理解。在本文中,我们研究了密度为 $f(X)\propto e^{-\lambda\Vert X\Vert_*}$ 的分布,发现通过微分几何方法可以解析地处理其许多基本属性。我们利用这些事实设计了一种改进的MCMC算法用于低秩贝叶斯推断,并学习惩罚参数 $\lambda$,从而在超参数调优困难或不可能时避免其需求。最后,我们通过数值实验将这些方法应用于提升低秩贝叶斯矩阵去噪与补全算法的准确性和效率。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
31+阅读 · 2021年6月30日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员