In 2019, Letzter confirmed a conjecture of Balogh, Bar\'at, Gerbner, Gy\'arf\'as and S\'ark\"ozy, proving that every large $2$-edge-coloured graph $G$ on $n$ vertices with minimum degree at least $3n/4$ can be partitioned into two monochromatic cycles of different colours. Here, we propose a weaker condition on the degree sequence of $G$ to also guarantee such a partition and prove an approximate version. Continuing work by Allen, B\"ottcher, Lang, Skokan and Stein, we also show that if $\operatorname{deg}(u) + \operatorname{deg}(v) \geq 4n/3 + o(n)$ holds for all non-adjacent vertices $u,v \in V(G)$, then all but $o(n)$ vertices can be partitioned into three monochromatic cycles.


翻译:2019年,Letzter确认了Balogh、Bar\'at、Gerbner、Gy\'arf\'as和S\'ark\'ozy的猜想,证明每张价值至少为30/40美元、价值至少为30/40美元的巨型顶色图形$G美元可以分割成两种不同颜色的单色循环。在这里,我们提议了一个以$G为单位的较弱条件,以保障这种分区并证明一个大致的版本。Allen、B\'ottcher、Lang、Skokkankan和Stein的继续工作,我们还表明如果$\opratorname{deg}(u)+\opratorname{deg}(v)\geq 4n/3+o(n)在所有非相形脊椎的美元V(G)之间可以分割成三个单色循环。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月18日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员