Eye typing interfaces enable a person to enter text into an interface using only their own eyes. But despite the inherent advantages of touchless operation and intuitive design, such eye-typing interfaces often suffer from slow typing speeds, resulting in slow words per minute (WPM) counts. In this study, we add word and letter prediction to the eye-typing interface and investigate users' typing performance as well as their subjective experience while using the interface. In experiment 1, we compared three typing interfaces with letter prediction (LP), letter+word prediction (L+WP), and no prediction (NoP), respectively. We found that the interface with L+WP achieved the highest average text entry speed (5.48 WPM), followed by the interface with LP (3.42 WPM), and the interface with NoP (3.39 WPM). Participants were able to quickly understand the procedural design for word prediction and perceived this function as very helpful. Compared to LP and NoP, participants needed more time to familiarize themselves with L+WP in order to reach a plateau regarding text entry speed. Experiment 2 explored training effects in L+WP interfaces. Two moving speeds were implemented: slow (6.4{\deg}/s same speed as in experiment 1) and fast (10{\deg}/s). The study employed a mixed experimental design, incorporating moving speeds as a between-subjects factor, to evaluate its influence on typing performance throughout 10 consecutive training sessions. The results showed that the typing speed reached 6.17 WPM for the slow group and 7.35 WPM for the fast group after practice. Overall, the two experiments show that adding letter and word prediction to eye-typing interfaces increases typing speeds. We also find that more extended training is required to achieve these high typing speeds.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员