In tug-of-war, two players compete by moving a counter along edges of a graph, each winning the right to move at a given turn according to the flip of a possibly biased coin. The game ends when the counter reaches the boundary, a fixed subset of the vertices, at which point one player pays the other an amount determined by the boundary vertex. Economists and mathematicians have independently studied tug-of-war for many years, focussing respectively on resource-allocation forms of the game, in which players iteratively spend precious budgets in an effort to influence the bias of the coins that determine the turn victors; and on PDE arising in fine mesh limits of the constant-bias game in a Euclidean setting. In this article, we offer a mathematical treatment of a class of tug-of-war games with allocated budgets: each player is initially given a fixed budget which she draws on throughout the game to offer a stake at the start of each turn, and her probability of winning the turn is the ratio of her stake and the sum of the two stakes. We consider the game played on a tree, with boundary being the set of leaves, and the payment function being the indicator of a single distinguished leaf. We find the game value and the essentially unique Nash equilibrium of a leisurely version of the game, in which the move at any given turn is cancelled with constant probability after stakes have been placed. We show that the ratio of the players' remaining budgets is maintained at its initial value $\lambda$; game value is a biased infinity harmonic function; and the proportion of remaining budget that players stake at a given turn is given in terms of the spatial gradient and the $\lambda$-derivative of game value. We also indicate examples in which the solution takes a different form in the non-leisurely game.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
51+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年10月4日
Arxiv
0+阅读 · 2024年10月4日
Arxiv
43+阅读 · 2024年1月25日
Arxiv
45+阅读 · 2022年9月19日
VIP会员
相关VIP内容
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关论文
Arxiv
0+阅读 · 2024年10月4日
Arxiv
0+阅读 · 2024年10月4日
Arxiv
43+阅读 · 2024年1月25日
Arxiv
45+阅读 · 2022年9月19日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
51+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员