Flexible Krylov methods are a common standpoint for inverse problems. In particular, they are used to address the challenges associated with explicit variational regularization when it goes beyond the two-norm, for example involving an $\ell_p$ norm for $0 < p \leq 1$. Moreover, inner-product free Krylov methods have been revisited in the context of ill-posed problems, to speed up computations and improve memory requirements by means of using low precision arithmetics. However, these are effectively quasi-minimal residual methods, and can be used in combination with tools from randomized numerical linear algebra to improve the quality of the results. This work presents new flexible and inner-product free Krylov methods, including a new flexible generalized Hessenberg method for iteration-dependent preconditioning. Moreover, it introduces new randomized versions of the methods, based on the sketch-and-solve framework. Theoretical considerations are given, and numerical experiments are provided for different variational regularization terms to show the performance of the new methods.


翻译:灵活Krylov方法是处理反问题的常用手段。特别地,当显式变分正则化超越二范数框架时(例如涉及$0 < p \leq 1$的$\ell_p$范数),这类方法能有效应对相关挑战。此外,内积自由Krylov方法在不适定问题背景下被重新审视,通过采用低精度算术来加速计算并改善内存需求。然而这些方法本质上是拟最小残差法,可与随机数值线性代数工具结合以提升结果质量。本文提出了新型灵活内积自由Krylov方法,包括适用于迭代相关预处理的新型灵活广义Hessenberg方法。同时基于草图求解框架,提出了该方法的随机化版本。文中给出了理论分析,并针对不同变分正则化项进行了数值实验,以展示新方法的性能表现。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Arxiv
57+阅读 · 2022年1月5日
Arxiv
18+阅读 · 2021年3月16日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
57+阅读 · 2022年1月5日
Arxiv
18+阅读 · 2021年3月16日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员