Profiling is important for performance optimization by providing real-time observations and measurements of important parameters of hardware execution. Existing profiling tools for High-Level Synthesis (HLS) IPs running on FPGAs are far less mature compared with those developed for fixed CPU and GPU architectures and they still lag behind mainly due to their dynamic architecture. This limitation is reflected in the typical approach of extracting monitoring signals off of an FPGA device individually from dedicated ports, using one BRAM per signal for temporary information storage, or embedding vendor specific primitives to manually analyze the waveform. In this paper, we propose a systematic profiling method tailored to the dynamic nature of FPGA systems, particularly suitable for streaming accelerators. Instead of relying on signal extraction, the proposed profiling stream flows alongside the actual data, dynamically splitting and merging in synchrony with the data stream, and is ultimately directed to the processing system (PS) side. We conducted a preliminary evaluation of this method on randomly interconnected neural networks (RINNs) using the FIFO fullness metric, with co-simulation results for validation.


翻译:性能分析通过提供硬件执行关键参数的实时观测与测量,对性能优化至关重要。与针对固定CPU和GPU架构开发的成熟工具相比,现有面向FPGA上运行的高层次综合(HLS)IP核的性能分析工具远未成熟,其主要滞后原因在于FPGA的动态架构特性。这一局限性体现在典型方法中:通过专用端口从FPGA器件单独提取监测信号,每个信号使用一个BRAM进行临时信息存储,或嵌入厂商特定原语进行手动波形分析。本文提出一种针对FPGA系统动态特性定制的系统化性能分析方法,特别适用于流式加速器。该方法不依赖信号提取,而是让分析流与实际数据流并行传输,随数据流动态分合,最终导向处理系统(PS)端。我们使用FIFO占用率指标在随机互连神经网络(RINNs)上对该方法进行了初步评估,并通过协同仿真结果进行了验证。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员