We propose a novel method for protecting trained models with a secret key so that unauthorized users without the correct key cannot get the correct inference. By taking advantage of transfer learning, the proposed method enables us to train a large protected model like a model trained with ImageNet by using a small subset of a training dataset. It utilizes a learnable encryption step with a secret key to generate learnable transformed images. Models with pre-trained weights are fine-tuned by using such transformed images. In experiments with the ImageNet dataset, it is shown that the performance of a protected model was close to that of a non-protected model when the correct key was given, while the accuracy tremendously dropped when an incorrect key was used. The protected model was also demonstrated to be robust against key estimation attacks.


翻译:我们提议了一种保护经过训练的带有秘密密钥的模型的新颖方法,这样,没有正确密钥的未经授权的用户就不能得到正确的推断。 通过利用转移学习,拟议方法使我们能够培训一个大型保护模式,例如通过使用一个培训数据集的小子集与图像网络培训的模型。它使用一个带有秘密密钥的可学习加密步骤来生成可学习的变形图像。使用这种经过训练的图像,对具有预先训练的重量的模型进行微调。在与图像网络数据集的实验中,显示在提供正确的密钥时,受保护模式的性能接近于非保护模式的性能,而使用不正确的密钥时的准确性则大大降低。还证明,有预训练的重量的模型对关键估计攻击非常有力。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
6+阅读 · 2018年12月10日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
相关论文
Top
微信扫码咨询专知VIP会员