We exhibit an $n$-bit partial function with randomized communication complexity $O(\log n)$ but such that any completion of this function into a total one requires randomized communication complexity $n^{Ω(1)}$. In particular, this shows an exponential separation between randomized and \emph{pseudodeterministic} communication protocols. Previously, Gavinsky (2025) showed an analogous separation in the weaker model of parity decision trees. We use lifting techniques to extend his proof idea to communication complexity.


翻译:我们构造了一个 $n$ 位部分函数,其随机化通信复杂度为 $O(\log n)$,但将该函数补全为全函数后,其随机化通信复杂度需要 $n^{Ω(1)}$。特别地,这揭示了随机化通信协议与伪确定性通信协议之间的指数级分离。此前,Gavinsky (2025) 在较弱的奇偶决策树模型中展示了类似的分离结果。我们利用提升技术将其证明思想推广至通信复杂度领域。

0
下载
关闭预览

相关内容

决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。Entropy = 系统的凌乱程度,使用算法ID3, C4.5和C5.0生成树算法使用熵。这一度量是基于信息学理论中熵的概念。 决策树是一种树形结构,其中每个内部节点表示一个属性上的测试,每个分支代表一个测试输出,每个叶节点代表一种类别。 分类树(决策树)是一种十分常用的分类方法。他是一种监管学习,所谓监管学习就是给定一堆样本,每个样本都有一组属性和一个类别,这些类别是事先确定的,那么通过学习得到一个分类器,这个分类器能够对新出现的对象给出正确的分类。这样的机器学习就被称之为监督学习。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【ICML2025】生成模型中潜空间的Hessian几何结构
专知会员服务
17+阅读 · 2025年6月15日
【ICML2023】无消息传递的transformer图归纳偏差
专知会员服务
26+阅读 · 2023年6月1日
专知会员服务
16+阅读 · 2021年10月4日
专知会员服务
25+阅读 · 2021年7月31日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
Arxiv
0+阅读 · 1月1日
Arxiv
0+阅读 · 2025年12月31日
VIP会员
相关VIP内容
【ICML2025】生成模型中潜空间的Hessian几何结构
专知会员服务
17+阅读 · 2025年6月15日
【ICML2023】无消息传递的transformer图归纳偏差
专知会员服务
26+阅读 · 2023年6月1日
专知会员服务
16+阅读 · 2021年10月4日
专知会员服务
25+阅读 · 2021年7月31日
相关资讯
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员