Traditional numerical methods for calculating matrix eigenvalues are prohibitively expensive for high-dimensional problems. Randomized iterative methods allow for the estimation of a single dominant eigenvalue at reduced cost by leveraging repeated random sampling and averaging. We present a general approach to extending such methods for the estimation of multiple eigenvalues and demonstrate its performance for problems in quantum chemistry with matrices as large as 28 million by 28 million.


翻译:对于高维问题,传统的计算电子元值矩阵的数字方法过于昂贵,难以承受。随机迭代方法通过利用反复随机采样和平均法,可以以较低的成本估算单一主要电子元值。我们提出了一个总体方法,以扩大这种估算多种电子元值的方法,并用高达2 800万到2 800万的基数来显示其在量子化学问题方面的性能。

0
下载
关闭预览

相关内容

专知会员服务
78+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
专知会员服务
61+阅读 · 2020年3月19日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年5月16日
VIP会员
相关VIP内容
专知会员服务
78+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
专知会员服务
61+阅读 · 2020年3月19日
相关资讯
Top
微信扫码咨询专知VIP会员