In this paper, we revisit the Recursive Projection-Aggregation (RPA) decoder, of Ye and Abbe (2020), for Reed-Muller (RM) codes. Our main contribution is an explicit upper bound on the probability of incorrect decoding, using the RPA decoder, over a binary symmetric channel (BSC). Importantly, we focus on the events where a \emph{single} iteration of the RPA decoder, in each recursive call, is sufficient for convergence. Key components of our analysis are explicit estimates of the probability of incorrect decoding of first-order RM codes using a maximum likelihood (ML) decoder, and estimates of the error probabilities during the aggregation phase of the RPA decoder. Our results allow us to show that for RM codes with blocklength $N = 2^m$, the RPA decoder can achieve vanishing error probabilities, in the large blocklength limit, for RM orders that grow roughly logarithmically in $m$.
翻译:本文重新审视了Ye与Abbe(2020)提出的用于Reed-Muller(RM)码的递归投影聚合(RPA)解码器。我们的主要贡献是给出了在二进制对称信道(BSC)上使用RPA解码器时译码错误概率的一个显式上界。重要的是,我们聚焦于在每次递归调用中仅需执行RPA解码器\emph{单次}迭代即可收敛的事件。我们分析的关键组成部分包括:使用最大似然(ML)解码器对一阶RM码进行译码的错误概率的显式估计,以及对RPA解码器聚合阶段错误概率的估计。我们的结果表明,对于码块长度$N = 2^m$的RM码,在码块长度趋于无穷大的极限下,当RM码的阶数以大致对数速率随$m$增长时,RPA解码器能够实现趋近于零的错误概率。