The abundance of information on social media has reshaped public discussions, shifting attention to the mechanisms that drive online discourse. This study analyzes large-scale Twitter (now X) data from three global debates--Climate Change, COVID-19, and the Russo-Ukrainian War--to investigate the structural dynamics of engagement. Our findings reveal that discussions are not primarily shaped by specific categories of actors, such as media or activists, but by shared ideological alignment. Users consistently form polarized communities, where their ideological stance in one debate predicts their positions in others. This polarization transcends individual topics, reflecting a broader pattern of ideological divides. Furthermore, the influence of individual actors within these communities appears secondary to the reinforcing effects of selective exposure and shared narratives. Overall, our results underscore that ideological alignment, rather than actor prominence, plays a central role in structuring online discourse and shaping the spread of information in polarized environments.


翻译:社交媒体上的信息泛滥重塑了公共讨论,将关注点转向驱动在线话语的机制。本研究分析了来自三大全球性辩论——气候变化、COVID-19和俄乌战争——的大规模Twitter(现称X)数据,以探究参与度的结构动态。我们的研究结果表明,讨论并非主要由特定类型的参与者(如媒体或活动人士)塑造,而是由共享的意识形态一致性所决定。用户持续形成极化社群,其在某一辩论中的意识形态立场可预测其在其他议题中的立场。这种极化现象超越了个别议题,反映了更广泛的意识形态分化模式。此外,在这些社群中,个体参与者的影响力似乎次于选择性接触和共享叙事所产生的强化效应。总体而言,我们的研究结果强调,在结构化在线话语和塑造极化环境中信息传播方面,意识形态一致性比参与者的显赫地位起着更为核心的作用。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2020年11月26日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员