This paper presents a novel framework, named Global-Local Correspondence Framework (GLCF), for visual anomaly detection with logical constraints. Visual anomaly detection has become an active research area in various real-world applications, such as industrial anomaly detection and medical disease diagnosis. However, most existing methods focus on identifying local structural degeneration anomalies and often fail to detect high-level functional anomalies that involve logical constraints. To address this issue, we propose a two-branch approach that consists of a local branch for detecting structural anomalies and a global branch for detecting logical anomalies. To facilitate local-global feature correspondence, we introduce a novel semantic bottleneck enabled by the visual Transformer. Moreover, we develop feature estimation networks for each branch separately to detect anomalies. Our proposed framework is validated using various benchmarks, including industrial datasets, Mvtec AD, Mvtec Loco AD, and the Retinal-OCT medical dataset. Experimental results show that our method outperforms existing methods, particularly in detecting logical anomalies.


翻译:本文提出了一个新的框架,名为全球-地方通讯框架(GLCF),用于在逻辑限制下进行视觉异常检测;视觉异常检测已成为各种现实应用,如工业异常检测和医疗疾病诊断等,一个活跃的研究领域;然而,大多数现有方法侧重于查明当地结构退化异常现象,而且往往未能发现涉及逻辑限制的高级功能异常现象;为解决这一问题,我们建议采用由地方分支组成的双部门办法,以发现结构异常现象,以及发现逻辑异常现象的全球分支。为便利地方-全球特征通信,我们引入了由视觉变异器启用的新型语义瓶颈。此外,我们为每个分支单独开发了特征估计网络,以探测异常现象。我们提议的框架使用各种基准得到验证,包括工业数据集、Mvtec AD、Mvtec Loco AD和Retinal-OCT医疗数据集。实验结果表明,我们的方法超越了现有方法,特别是在发现逻辑异常方面。</s>

0
下载
关闭预览

相关内容

在数据挖掘中,异常检测(英语:anomaly detection)对不符合预期模式或数据集中其他项目的项目、事件或观测值的识别。通常异常项目会转变成银行欺诈、结构缺陷、医疗问题、文本错误等类型的问题。异常也被称为离群值、新奇、噪声、偏差和例外。 特别是在检测滥用与网络入侵时,有趣性对象往往不是罕见对象,但却是超出预料的突发活动。这种模式不遵循通常统计定义中把异常点看作是罕见对象,于是许多异常检测方法(特别是无监督的方法)将对此类数据失效,除非进行了合适的聚集。相反,聚类分析算法可能可以检测出这些模式形成的微聚类。 有三大类异常检测方法。[1] 在假设数据集中大多数实例都是正常的前提下,无监督异常检测方法能通过寻找与其他数据最不匹配的实例来检测出未标记测试数据的异常。监督式异常检测方法需要一个已经被标记“正常”与“异常”的数据集,并涉及到训练分类器(与许多其他的统计分类问题的关键区别是异常检测的内在不均衡性)。半监督式异常检测方法根据一个给定的正常训练数据集创建一个表示正常行为的模型,然后检测由学习模型生成的测试实例的可能性。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2019年1月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员