SpoofTrackBench is a reproducible, modular benchmark for evaluating adversarial robustness in real-time localization and tracking (RTLS) systems under radar spoofing. Leveraging the Hampton University Skyler Radar Sensor dataset, we simulate drift, ghost, and mirror-type spoofing attacks and evaluate tracker performance using both Joint Probabilistic Data Association (JPDA) and Global Nearest Neighbor (GNN) architectures. Our framework separates clean and spoofed detection streams, visualizes spoof-induced trajectory divergence, and quantifies assignment errors via direct drift-from-truth metrics. Clustering overlays, injection-aware timelines, and scenario-adaptive visualizations enable interpretability across spoof types and configurations. Evaluation figures and logs are auto-exported for reproducible comparison. SpoofTrackBench sets a new standard for open, ethical benchmarking of spoof-aware tracking pipelines, enabling rigorous cross-architecture analysis and community validation.


翻译:SpoofTrackBench是一个可复现、模块化的基准测试框架,用于评估雷达欺骗攻击下实时定位与跟踪系统的对抗鲁棒性。基于汉普顿大学Skyler雷达传感器数据集,我们模拟了漂移型、鬼影型和镜像型欺骗攻击,并采用联合概率数据关联与全局最近邻架构对跟踪器性能进行评估。该框架分离了纯净与受欺骗的检测数据流,通过轨迹偏离可视化呈现欺骗效应,并采用直接真值偏移度量对关联误差进行量化。聚类叠加图、注入感知时间轴和场景自适应可视化技术实现了跨欺骗类型与配置的可解释性分析。评估图表与日志可自动导出以供可复现比较。SpoofTrackBench为欺骗感知跟踪流程的开放化、伦理化基准测试设立了新标准,为跨架构严格分析与社区验证提供了技术支撑。

0
下载
关闭预览

相关内容

人工智能杂志AI(Artificial Intelligence)是目前公认的发表该领域最新研究成果的主要国际论坛。该期刊欢迎有关AI广泛方面的论文,这些论文构成了整个领域的进步,也欢迎介绍人工智能应用的论文,但重点应该放在新的和新颖的人工智能方法如何提高应用领域的性能,而不是介绍传统人工智能方法的另一个应用。关于应用的论文应该描述一个原则性的解决方案,强调其新颖性,并对正在开发的人工智能技术进行深入的评估。 官网地址:http://dblp.uni-trier.de/db/journals/ai/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员