In this paper, we present approximate distance and shortest-path oracles for fault-tolerant Euclidean spanners motivated by the routing problem in real-world road networks. An $f$-fault-tolerant Euclidean $t$-spanner for a set $V$ of $n$ points in $\mathbb{R}^d$ is a graph $G=(V,E)$ where, for any two points $p$ and $q$ in $V$ and a set $F$ of $f$ vertices of $V$, the distance between $p$ and $q$ in $G-F$ is at most $t$ times their Euclidean distance. Given an $f$-fault-tolerant Euclidean $t$-spanner $G$ with $O(n)$ edges and a constant $\varepsilon$, our data structure has size $O_{t,f}(n\log n)$, and this allows us to compute an $(1+\varepsilon)$-approximate distance in $G-F$ between $s$ and $s'$ can be computed in constant time for any two vertices $s$ and $s'$ and a set $F$ of $f$ failed vertices. Also, with a data structure of size $O_{t,f}(n\log n\log\log n)$, we can compute an $(1+\varepsilon)$-approximate shortest path in $G-F$ between $s$ and $s'$ in $O_{t,f}(\log^2 n\log\log n+\textsf{sol})$ time for any two vertices $s$ and $s'$ and a set $F$ of failed vertices, where $\textsf{sol}$ denotes the number of vertices in the returned path.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年2月13日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员