Covariance functions and variograms play a fundamental role in exploratory analysis and statistical modelling of spatial and spatio-temporal datasets. In this paper, we construct a new class of spatial covariance functions using the Fourier transform of some higher-order kernels. Further, we extend this class of the spatial covariance functions to the spatio-temporal setting by using the idea used in Ma (2003).


翻译:共变函数和变体在空间和时空空间和空间-时空数据集的探索性分析和统计建模方面发挥着根本作用。在本文件中,我们利用某些较高级内核的Fourier变换,构建了一个新的空间共变功能类别。此外,我们利用Ma(2003年)使用的想法,将这一类空间共变函数扩大到时空环境。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员