We consider learning an unknown target function $f_*$ using kernel ridge regression (KRR) given i.i.d. data $(u_i,y_i)$, $i\leq n$, where $u_i \in U$ is a covariate vector and $y_i = f_* (u_i) +\varepsilon_i \in \mathbb{R}$. A recent string of work has empirically shown that the test error of KRR can be well approximated by a closed-form estimate derived from an `equivalent' sequence model that only depends on the spectrum of the kernel operator. However, a theoretical justification for this equivalence has so far relied either on restrictive assumptions -- such as subgaussian independent eigenfunctions -- , or asymptotic derivations for specific kernels in high dimensions. In this paper, we prove that this equivalence holds for a general class of problems satisfying some spectral and concentration properties on the kernel eigendecomposition. Specifically, we establish in this setting a non-asymptotic deterministic approximation for the test error of KRR -- with explicit non-asymptotic bounds -- that only depends on the eigenvalues and the target function alignment to the eigenvectors of the kernel. Our proofs rely on a careful derivation of deterministic equivalents for random matrix functionals in the dimension free regime pioneered by Cheng and Montanari (2022). We apply this setting to several classical examples and show an excellent agreement between theoretical predictions and numerical simulations. These results rely on having access to the eigendecomposition of the kernel operator. Alternatively, we prove that, under this same setting, the generalized cross-validation (GCV) estimator concentrates on the test error uniformly over a range of ridge regularization parameter that includes zero (the interpolating solution). As a consequence, the GCV estimator can be used to estimate from data the test error and optimal regularization parameter for KRR.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年4月26日
Arxiv
0+阅读 · 2024年4月24日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员