As the popularity of video streaming entertainment continues to grow, understanding how users engage with the content and react to its changes becomes a critical success factor for every stakeholder. User engagement, i.e., the percentage of video the user watches before quitting, is central to customer loyalty, content personalization, ad relevance, and A/B testing. This paper presents DIGITWISE, a digital twin-based approach for modeling adaptive video streaming engagement. Traditional adaptive bitrate (ABR) algorithms assume that all users react similarly to video streaming artifacts and network issues, neglecting individual user sensitivities. DIGITWISE leverages the concept of a digital twin, a digital replica of a physical entity, to model user engagement based on past viewing sessions. The digital twin receives input about streaming events and utilizes supervised machine learning to predict user engagement for a given session. The system model consists of a data processing pipeline, machine learning models acting as digital twins, and a unified model to predict engagement. DIGITWISE employs the XGBoost model in both digital twins and unified models. The proposed architecture demonstrates the importance of personal user sensitivities, reducing user engagement prediction error by up to 5.8% compared to non-user-aware models. Furthermore, DIGITWISE can optimize content provisioning and delivery by identifying the features that maximize engagement, providing an average engagement increase of up to 8.6%.


翻译:随着视频流媒体娱乐的日益普及,理解用户如何参与内容并对其变化作出反应,已成为所有利益相关者取得成功的关键因素。用户参与度,即用户在退出前观看视频的百分比,对于客户忠诚度、内容个性化、广告相关性以及A/B测试至关重要。本文提出了DIGITWISE,一种基于数字孪生的自适应视频流媒体参与度建模方法。传统的自适应比特率(ABR)算法假设所有用户对视频流媒体伪影和网络问题的反应相似,忽略了用户的个体敏感性。DIGITWISE利用数字孪生(物理实体的数字副本)的概念,基于过往观看会话对用户参与度进行建模。该数字孪生接收关于流媒体事件的输入,并利用监督式机器学习来预测给定会话的用户参与度。系统模型包括一个数据处理流水线、作为数字孪生的机器学习模型以及一个用于预测参与度的统一模型。DIGITWISE在数字孪生和统一模型中均采用了XGBoost模型。所提出的架构证明了个人用户敏感性的重要性,与非用户感知模型相比,将用户参与度预测误差降低了高达5.8%。此外,DIGITWISE能够通过识别最大化参与度的特征来优化内容提供与传输,从而实现平均参与度提升高达8.6%。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
GeomCA: Geometric Evaluation of Data Representations
Arxiv
11+阅读 · 2021年5月26日
Arxiv
16+阅读 · 2021年1月27日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员