Signals can be interpreted as composed of a rapidly varying component modulated by a slower varying envelope. Identifying this envelope is an essential operation in signal processing, with applications in areas ranging from seismology to medicine. Conventional envelope detection approaches based on classic methods tend to lack generality, however, and need to be tailored to each specific application in order to yield reasonable results. Taking inspiration from geometric concepts, most notably the theory of alpha-shapes, we introduce a general-purpose library to efficiently extract the envelope of arbitrary signals.


翻译:信号可以被解释为由迅速变化的部件组成,由变化较慢的信封调节。识别这个信封是信号处理中的一项基本操作,其应用范围从地震学到医学。但是,基于传统方法的常规信封探测方法往往缺乏普遍性,需要根据每个具体应用量体裁衣,以便产生合理的结果。我们从几何概念,特别是阿尔法-形状理论中汲取灵感,引入一个通用图书馆,以便有效地提取任意信号。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
VIP会员
相关资讯
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Top
微信扫码咨询专知VIP会员