As easy-to-use deep learning libraries such as Tensorflow and Pytorch are popular, it has become convenient to develop machine learning models. Due to privacy issues with centralized machine learning, recently, federated learning in the distributed computing framework is attracting attention. The central server does not collect sensitive and personal data from clients in federated learning, but it only aggregates the model parameters. Though federated learning helps protect privacy, it is difficult for machine learning developers to share the models that they could utilize for different-domain applications. In this paper, we propose a federated learning model sharing service named Federated Learning Hub (FLHub). Users can upload, download, and contribute the model developed by other developers similarly to GitHub. We demonstrate that a forked model can finish training faster than the existing model and that learning progressed more quickly for each federated round.


翻译:由于Tensorflow和Pytorch等易于使用的深层学习图书馆很受欢迎,因此开发机器学习模式变得十分方便。由于中央机械学习的隐私问题,最近,在分布式计算框架中的联合会式学习引起了人们的注意。中央服务器不从联合学习的客户那里收集敏感和个人数据,而只是汇总模型参数。尽管联合学习有助于保护隐私,但机器学习开发者很难分享他们可用于不同领域应用的模式。在本文中,我们提议建立一个名为联邦学习中心(FLFHHub)的联合会式学习共享服务。用户可以上传、下载和贡献其他开发者开发的类似GitHub的模型。我们证明,一个轮式模型可以比现有模型更快地完成培训,而且每个交热周期的学习进展更快。

1
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
92+阅读 · 2020年12月2日
专知会员服务
41+阅读 · 2020年9月6日
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年4月30日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
6+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月17日
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
92+阅读 · 2020年12月2日
专知会员服务
41+阅读 · 2020年9月6日
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年4月30日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
6+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员