We propose Serenade, a novel framework for the singing style conversion (SSC) task. Although singer identity conversion has made great strides in the previous years, converting the singing style of a singer has been an unexplored research area. We find three main challenges in SSC: modeling the target style, disentangling source style, and retaining the source melody. To model the target singing style, we use an audio infilling task by predicting a masked segment of the target mel-spectrogram with a flow-matching model using the complement of the masked target mel-spectrogram along with disentangled acoustic features. On the other hand, to disentangle the source singing style, we use a cyclic training approach, where we use synthetic converted samples as source inputs and reconstruct the original source mel-spectrogram as a target. Finally, to retain the source melody better, we investigate a post-processing module using a source-filter-based vocoder and resynthesize the converted waveforms using the original F0 patterns. Our results showed that the Serenade framework can handle generalized SSC tasks with the best overall similarity score, especially in modeling breathy and mixed singing styles. Moreover, although resynthesizing with the original F0 patterns alleviated out-of-tune singing and improved naturalness, we found a slight tradeoff in similarity due to not changing the F0 patterns into the target style.


翻译:我们提出Serenade,一种用于歌唱风格转换(SSC)任务的新型框架。尽管歌手身份转换在过去几年已取得重大进展,但转换歌手的演唱风格仍是一个尚未探索的研究领域。我们发现SSC存在三个主要挑战:目标风格建模、源风格解耦以及源旋律保留。为建模目标演唱风格,我们采用音频填充任务,通过流匹配模型预测目标梅尔频谱图的掩码片段,该模型使用掩码后剩余的目标梅尔频谱图配合解耦的声学特征。另一方面,为实现源演唱风格解耦,我们采用循环训练方法,将合成转换样本作为源输入,并以重建原始源梅尔频谱图为目标。最后,为更好地保留源旋律,我们研究了基于源-滤波器的声码器后处理模块,利用原始基频(F0)模式重新合成转换后的波形。实验结果表明,Serenade框架能够处理广义SSC任务,获得最佳整体相似度评分,尤其在建模气声与混合演唱风格方面表现突出。此外,尽管使用原始F0模式重新合成缓解了跑调问题并提升了自然度,但由于未将F0模式转换为目标风格,我们在相似度方面发现了轻微的权衡效应。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
UNITER: Learning UNiversal Image-TExt Representations
Arxiv
23+阅读 · 2019年9月25日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员