We investigate the task of deterministically condensing randomness from Online Non-Oblivious Symbol Fixing (oNOSF) sources, a natural model for which extraction is impossible [AORSV, EUROCRYPT'20]. A $(g,\ell)$-oNOSF source is a sequence of $\ell$ blocks where at least $g$ of the blocks are good (independent and have some min-entropy) and the remaining bad blocks are controlled by an online adversary where each bad block can be arbitrarily correlated with any block that appears before it. The existence of condensers was studied in [CGR, FOCS'24]. They proved condensing impossibility results for various values of $g, \ell$ and showed the existence of condensers matching the impossibility results in the case when $n$ is extremely large compared to $\ell$. In this work, we make significant progress on proving the existence of condensers with strong parameters in almost all parameter regimes, even when $n$ is a large enough constant and $\ell$ is growing. This almost resolves the question of the existence of condensers for oNOSF sources, except when $n$ is a small constant. We construct the first explicit condensers for oNOSF sources, achieve parameters that match the existential results of [CGR, FOCS'24], and obtain an improved construction for transforming low-entropy oNOSF sources into uniform ones. We find applications of our results to collective coin flipping and sampling, well-studied problems in fault-tolerant distributed computing. We use our condensers to provide simple protocols for these problems. To understand the case of small $n$, we focus on $n=1$ which corresponds to online non-oblivious bit-fixing (oNOBF) sources. We initiate a study of a new, natural notion of influence of Boolean functions which we call online influence. We establish tight bounds on the total online influence of Boolean functions, implying extraction lower bounds.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
15+阅读 · 2022年5月14日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
12+阅读 · 2019年2月26日
Arxiv
22+阅读 · 2018年2月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
12+阅读 · 2022年11月21日
Arxiv
15+阅读 · 2022年5月14日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
12+阅读 · 2019年2月26日
Arxiv
22+阅读 · 2018年2月14日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员