Industrial control systems (ICS) are vital to modern infrastructure but increasingly vulnerable to cybersecurity threats, particularly through weaknesses in their communication protocols. This paper presents MALF (Multi-Agent LLM Fuzzing Framework), an advanced fuzzing solution that integrates large language models (LLMs) with multi-agent coordination to identify vulnerabilities in industrial control protocols (ICPs). By leveraging Retrieval-Augmented Generation (RAG) for domain-specific knowledge and QLoRA fine-tuning for protocol-aware input generation, MALF enhances fuzz testing precision and adaptability. The multi-agent framework optimizes seed generation, mutation strategies, and feedback-driven refinement, leading to improved vulnerability discovery. Experiments on protocols like Modbus/TCP, S7Comm, and Ethernet/IP demonstrate that MALF surpasses traditional methods, achieving a test case pass rate (TCPR) of 88-92% and generating more exception triggers (ETN). MALF also maintains over 90% seed coverage and Shannon entropy values between 4.2 and 4.6 bits, ensuring diverse, protocol-compliant mutations. Deployed in a real-world Industrial Attack-Defense Range for power plants, MALF identified critical vulnerabilities, including three zero-day flaws, one confirmed and registered by CNVD. These results validate MALF's effectiveness in real-world fuzzing applications. This research highlights the transformative potential of multi-agent LLMs in ICS cybersecurity, offering a scalable, automated framework that sets a new standard for vulnerability discovery and strengthens critical infrastructure security against emerging threats.


翻译:工业控制系统(ICS)对现代基础设施至关重要,但其通信协议中的漏洞使其日益面临网络安全威胁。本文提出MALF(多智能体大语言模型模糊测试框架),这是一种将大语言模型(LLMs)与多智能体协同相结合的先进模糊测试方案,用于识别工业控制协议(ICPs)中的漏洞。通过利用检索增强生成(RAG)获取领域特定知识,并采用QLoRA微调实现协议感知的输入生成,MALF提升了模糊测试的精确性和适应性。该多智能体框架优化了种子生成、变异策略及反馈驱动的迭代改进,从而增强了漏洞发现能力。在Modbus/TCP、S7Comm和Ethernet/IP等协议上的实验表明,MALF超越了传统方法,实现了88-92%的测试用例通过率(TCPR),并生成了更多的异常触发(ETN)。MALF还保持了超过90%的种子覆盖率以及4.2至4.6比特的香农熵值,确保了多样且符合协议的变异。在电厂真实工业攻防靶场中部署时,MALF发现了多个关键漏洞,包括三个零日漏洞,其中一个已获国家信息安全漏洞共享平台(CNVD)确认并收录。这些结果验证了MALF在实际模糊测试应用中的有效性。本研究凸显了多智能体大语言模型在ICS网络安全中的变革潜力,提供了一个可扩展、自动化的框架,为漏洞发现设立了新标准,并增强了关键基础设施应对新兴威胁的安全防护能力。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员