We propose a novel approach for detecting personal data in structured datasets, leveraging GPT-4o, a state-of-the-art Large Language Model. A key innovation of our method is the incorporation of contextual information: in addition to a feature's name and values, we utilize information from other feature names within the dataset as well as the dataset description. We compare our approach to alternative methods, including Microsoft Presidio and CASSED, evaluating them on multiple datasets: DeSSI, a large synthetic dataset, datasets we collected from Kaggle and OpenML as well as MIMIC-Demo-Ext, a real-world dataset containing patient information from critical care units. Our findings reveal that detection performance varies significantly depending on the dataset used for evaluation. CASSED excels on DeSSI, the dataset on which it was trained. Performance on the medical dataset MIMIC-Demo-Ext is comparable across all models, with our GPT-4o-based approach clearly outperforming the others. Notably, personal data detection in the Kaggle and OpenML datasets appears to benefit from contextual information. This is evidenced by the poor performance of CASSED and Presidio (both of which do not utilize the context of the dataset) compared to the strong results of our GPT-4o-based approach. We conclude that further progress in this field would greatly benefit from the availability of more real-world datasets containing personal information.


翻译:我们提出了一种新颖的方法,用于检测结构化数据集中的个人数据,该方法利用了最先进的大型语言模型GPT-4o。我们方法的一个关键创新是结合了上下文信息:除了特征名称和值之外,我们还利用了数据集中其他特征名称的信息以及数据集描述。我们将我们的方法与替代方法(包括Microsoft Presidio和CASSED)进行了比较,并在多个数据集上进行了评估:大型合成数据集DeSSI、我们从Kaggle和OpenML收集的数据集,以及包含重症监护病房患者信息的真实世界数据集MIMIC-Demo-Ext。我们的研究结果表明,检测性能因所使用的评估数据集而有显著差异。CASSED在其训练数据集DeSSI上表现出色。在医疗数据集MIMIC-Demo-Ext上,所有模型的性能相当,而我们基于GPT-4o的方法明显优于其他方法。值得注意的是,在Kaggle和OpenML数据集中的个人数据检测似乎受益于上下文信息。这一点通过CASSED和Presidio(两者均未利用数据集上下文)的较差性能,与我们基于GPT-4o的方法的强劲结果对比得以证明。我们得出结论,该领域的进一步进展将极大地受益于更多包含个人信息的真实世界数据集的可用性。

0
下载
关闭预览

相关内容

数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。
Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员