Edge-AI applications still face considerable challenges in enhancing computational efficiency in resource-constrained environments. This work presents RAMAN, a resource-efficient and approximate posit(8,2)-based Multiply-Accumulate (MAC) architecture designed to improve hardware efficiency within bandwidth limitations. The proposed REAP (Resource-Efficient Approximate Posit) MAC engine, which is at the core of RAMAN, uses approximation in the posit multiplier to achieve significant area and power reductions with an impact on accuracy. To support diverse AI workloads, this MAC unit is incorporated in a scalable Vector Execution Unit (VEU), which permits hardware reuse and parallelism among deep neural network layers. Furthermore, we propose an algorithm-hardware co-design framework incorporating approximation-aware training to evaluate the impact of hardware-level approximation on application-level performance. Empirical validation on FPGA and ASIC platforms shows that the proposed REAP MAC achieves up to 46% in LUT savings and 35.66% area, 31.28% power reduction, respectively, over the baseline Posit Dot-Product Unit (PDPU) design, while maintaining high accuracy (98.45%) for handwritten digit recognition. RAMAN demonstrates a promising trade-off between hardware efficiency and learning performance, making it suitable for next-generation edge intelligence.


翻译:边缘AI应用在资源受限环境中提升计算效率仍面临显著挑战。本文提出RAMAN——一种基于posit(8,2)的资源高效近似乘累加(MAC)架构,旨在带宽限制下提升硬件效率。作为RAMAN核心的REAP(资源高效近似Posit)MAC引擎,通过在posit乘法器中采用近似计算,以精度为代价实现了显著的面积与功耗降低。为支持多样化AI工作负载,该MAC单元被集成至可扩展向量执行单元(VEU)中,支持硬件复用及深度神经网络层间并行处理。此外,我们提出融合近似感知训练的算法-硬件协同设计框架,用以评估硬件级近似对应用层性能的影响。在FPGA与ASIC平台上的实验验证表明,相较于基准Posit点积单元(PDPU)设计,所提出的REAP MAC在保持手写数字识别高精度(98.45%)的同时,最高可实现46%的LUT节省,以及分别达35.66%的面积缩减与31.28%的功耗降低。RAMAN在硬件效率与学习性能间展现出优越的权衡特性,适用于新一代边缘智能系统。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
19+阅读 · 2021年4月8日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员