Recently, convolutional neural networks (CNNs) with large size kernels have attracted much attention in the computer vision field, following the success of the Vision Transformers. Large kernel CNNs have been reported to perform well in downstream vision tasks as well as in classification performance. The reason for the high-performance of large kernel CNNs in downstream tasks has been attributed to the large effective receptive field (ERF) produced by large size kernels, but this view has not been fully tested. We therefore revisit the performance of large kernel CNNs in downstream task, focusing on the weakly supervised object localization (WSOL) task. WSOL, a difficult downstream task that is not fully supervised, provides a new angle to explore the capabilities of the large kernel CNNs. Our study compares the modern large kernel CNNs ConvNeXt, RepLKNet, and SLaK to test the validity of the naive expectation that ERF size is important for improving downstream task performance. Our analysis of the factors contributing to high performance provides a different perspective, in which the main factor is feature map improvement. Furthermore, we find that modern CNNs are robust to the CAM problems of local regions of objects being activated, which has long been discussed in WSOL. CAM is the most classic WSOL method, but because of the above-mentioned problems, it is often used as a baseline method for comparison. However, experiments on the CUB-200-2011 dataset show that simply combining a large kernel CNN, CAM, and simple data augmentation methods can achieve performance (90.99% MaxBoxAcc) comparable to the latest WSOL method, which is CNN-based and requires special training or complex post-processing. The code is available at https://github.com/snskysk/CAM-Back-Again.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员