Social scientists are often interested in using ordinal indicators to estimate latent traits that change over time. Frequently, this is done with item response theoretic (IRT) models that describe the relationship between those latent traits and observed indicators. We combine recent advances in Bayesian nonparametric IRT, which makes minimal assumptions on shapes of item response functions, and Gaussian process time series methods to capture dynamic structures in latent traits from longitudinal observations. We propose a generalized dynamic Gaussian process item response theory (GD-GPIRT) as well as a Markov chain Monte Carlo sampling algorithm for estimation of both latent traits and response functions. We evaluate GD-GPIRT in simulation studies against baselines in dynamic IRT, and apply it to various substantive studies, including assessing public opinions on economy environment and congressional ideology related to abortion debate.


翻译:社会科学家常关注利用序数指标来估计随时间变化的潜在特质。通常,这通过项目反应理论(IRT)模型实现,该模型描述了这些潜在特质与观测指标之间的关系。我们结合了贝叶斯非参数IRT的最新进展(对项目反应函数的形态做出最小假设)与高斯过程时间序列方法,以从纵向观测中捕捉潜在特质的动态结构。我们提出了广义动态高斯过程项目反应理论(GD-GPIRT)以及用于估计潜在特质和反应函数的马尔可夫链蒙特卡洛采样算法。我们在模拟研究中将GD-GPIRT与动态IRT的基线方法进行比较评估,并将其应用于多项实证研究,包括评估公众对经济环境的看法以及与堕胎辩论相关的国会意识形态。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
69+阅读 · 2022年6月13日
Arxiv
11+阅读 · 2018年5月21日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
69+阅读 · 2022年6月13日
Arxiv
11+阅读 · 2018年5月21日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员