Inertial odometry (IO) relies exclusively on signals from an inertial measurement unit (IMU) for localization and offers a promising avenue for consumer grade positioning. However, accurate modeling of the nonlinear motion patterns present in IMU signals remains the principal limitation on IO accuracy. To address this challenge, we propose CKANIO, an IO framework that integrates Chebyshev based Kolmogorov-Arnold Networks (Chebyshev KAN). Specifically, we design a novel residual architecture that leverages the nonlinear approximation capabilities of Chebyshev polynomials within the KAN framework to more effectively model the complex motion characteristics inherent in IMU signals. To the best of our knowledge, this work represents the first application of an interpretable KAN model to IO. Experimental results on five publicly available datasets demonstrate the effectiveness of CKANIO.


翻译:惯性里程计(IO)完全依赖惯性测量单元(IMU)的信号进行定位,为消费级定位提供了一条前景广阔的途径。然而,对IMU信号中存在的非线性运动模式进行精确建模,仍然是限制IO精度的主要瓶颈。为应对这一挑战,我们提出了CKANIO,一个集成了基于切比雪夫的柯尔莫哥洛夫-阿诺德网络(切比雪夫KAN)的IO框架。具体而言,我们设计了一种新颖的残差架构,该架构利用KAN框架内切比雪夫多项式的非线性逼近能力,以更有效地建模IMU信号中固有的复杂运动特性。据我们所知,这是可解释的KAN模型在IO领域的首次应用。在五个公开数据集上的实验结果验证了CKANIO的有效性。

0
下载
关闭预览

相关内容

切比雪夫多项式是以俄国著名数学家切比雪夫(Tschebyscheff,又译契贝雪夫等,1821一1894)的名字命名的重要的特殊函数,第一类切比雪夫多项式Tn和第二类切比雪夫多项式Un(简称切比雪夫多项式)。源起于多倍角的余弦函数和正弦函数的展开式,是与棣美弗定理有关、以递归方式定义的多项式序列,是计算数学中的一类特殊函数,对于注入连续函数逼近问题,阻抗变换问题等等的数学、物理学、技术科学中的近似计算有着非常重要的作用。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2024年4月16日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员