NASA's POLAR dataset contains approximately 2,600 pairs of high dynamic range stereo photos captured across 13 varied terrain scenarios, including areas with sparse or dense rock distributions, craters, and rocks of different sizes. The purpose of these photos is to spur development in robotics, AI-based perception, and autonomous navigation. Acknowledging a scarcity of lunar images from around the lunar poles, NASA Ames produced on Earth but in controlled conditions images that resemble rover operating conditions from these regions of the Moon. We report on the outcomes of an effort aimed at accomplishing two tasks. In Task 1, we provided bounding boxes and semantic segmentation information for all the images in NASA's POLAR dataset. This effort resulted in 23,000 labels and semantic segmentation annotations pertaining to rocks, shadows, and craters. In Task 2, we generated the digital twins of the 13 scenarios that have been used to produce all the photos in the POLAR dataset. Specifically, for each of these scenarios, we produced individual meshes, texture information, and material properties associated with the ground and the rocks in each scenario. This allows anyone with a camera model to synthesize images associated with any of the 13 scenarios of the POLAR dataset. Effectively, one can generate as many semantically labeled synthetic images as desired -- with different locations and exposure values in the scene, for different positions of the sun, with or without the presence of active illumination, etc. The benefit of this work is twofold. Using outcomes of Task 1, one can train and/or test perception algorithms that deal with Moon images. For Task 2, one can produce as much data as desired to train and test AI algorithms that are anticipated to work in lunar conditions. All the outcomes of this work are available in a public repository for unfettered use and distribution.


翻译:暂无翻译

0
下载
关闭预览

相关内容

美国国家航空航天局(National Aeronautics and Space Administration)简称 NASA,是美国负责太空计划的国家机构。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员