Since its establishment in 1999, the Metro Rail Transit Line 3 (MRT3) has served as a transportation option for numerous passengers in Metro Manila, Philippines. The Philippine government's transportation department records more than a thousand people using the MRT3 daily and forecasting the daily passenger count may be rather challenging. The MRT3's daily ridership fluctuates owing to variables such as holidays, working days, and other unexpected issues. Commuters do not know how many other commuters are on their route on a given day, which may hinder their ability to plan an efficient itinerary. Currently, the DOTr depends on spreadsheets containing historical data, which might be challenging to examine. This study presents a time series prediction of daily traffic to anticipate future attendance at a particular station on specific days.


翻译:自1999年成立以来,菲律宾马尼拉地铁三号线(MRT3)已成为众多乘客的交通选择。菲律宾政府交通部门记录每天有超过一千人使用MRT3,而预测每天的乘客数量可能相当具有挑战性。MRT3的日常乘客数量波动很大,这是由于节假日、工作日和其他意外问题等变量所致。乘客不知道在特定日子是否还有许多其他乘客使用同一路线,这可能会妨碍他们制定高效的行程。目前,DOTr依赖包含历史数据的电子表格,这可能很难进行分析。本研究提供了一种时间序列预测,以预测未来某个站点在特定的日期的客流量。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2020年9月6日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月31日
Arxiv
57+阅读 · 2022年1月5日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2020年9月6日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员