Krylov subspace methods are a ubiquitous tool for computing near-optimal rank $k$ approximations of large matrices. While "large block" Krylov methods with block size at least $k$ give the best known theoretical guarantees, block size one (a single vector) or a small constant is often preferred in practice. Despite their popularity, we lack theoretical bounds on the performance of such "small block" Krylov methods for low-rank approximation. We address this gap between theory and practice by proving that small block Krylov methods essentially match all known low-rank approximation guarantees for large block methods. Via a black-box reduction we show, for example, that the standard single vector Krylov method run for $t$ iterations obtains the same spectral norm and Frobenius norm error bounds as a Krylov method with block size $\ell \geq k$ run for $O(t/\ell)$ iterations, up to a logarithmic dependence on the smallest gap between sequential singular values. That is, for a given number of matrix-vector products, single vector methods are essentially as effective as any choice of large block size. By combining our result with tail-bounds on eigenvalue gaps in random matrices, we prove that the dependence on the smallest singular value gap can be eliminated if the input matrix is perturbed by a small random matrix. Further, we show that single vector methods match the more complex algorithm of [Bakshi et al. `22], which combines the results of multiple block sizes to achieve an improved algorithm for Schatten $p$-norm low-rank approximation.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员