Given a function f: [a,b] -> R, if f(a) < 0 and f(b)> 0 and f is continuous, the Intermediate Value Theorem implies that f has a root in [a,b]. Moreover, given a value-oracle for f, an approximate root of f can be computed using the bisection method, and the number of required evaluations is polynomial in the number of accuracy digits. The goal of this note is to identify conditions under which this polynomiality result extends to a multi-dimensional function that satisfies the conditions of Miranda's theorem -- the natural multi-dimensional extension of the Intermediate Value Theorem. In general, finding an approximate root might require an exponential number of evaluations even for a two-dimensional function. We show that, if f is two-dimensional and satisfies a single monotonicity condition, then the number of required evaluations is polynomial in the accuracy. For any fixed dimension d, if f is a d-dimensional function that satisfies all d^2-d ``ex-diagonal'' monotonicity conditions (that is, component i of f is monotonically decreasing with respect to variable j for all i!=j), then the number of required evaluations is polynomial in the accuracy. But if f satisfies only d^2-d-2 ex-diagonal conditions, then the number of required evaluations may be exponential in the accuracy. The case of d^2-d-1 ex-diagonal conditions remains unsolved. As an example application, we show that computing approximate roots of monotone functions can be used for approximate envy-free cake-cutting.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员