A probabilistic framework to study the dependence structure induced by deterministic discrete-time state-space systems between input and output processes is introduced. General sufficient conditions are formulated under which output processes exist and are unique once an input process has been fixed, a property that in the deterministic state-space literature is known as the echo state property. When those conditions are satisfied, the given state-space system becomes a generative model for probabilistic dependences between two sequence spaces. Moreover, those conditions guarantee that the output depends continuously on the input when using the Wasserstein metric. The output processes whose existence is proved are shown to be causal in a specific sense and to generalize those studied in purely deterministic situations. The results in this paper constitute a significant stochastic generalization of sufficient conditions for the deterministic echo state property to hold, in the sense that the stochastic echo state property can be satisfied under contractivity conditions that are strictly weaker than those in deterministic situations. This means that state-space systems can induce a purely probabilistic dependence structure between input and output sequence spaces even when there is no functional relation between those two spaces.


翻译:暂无翻译

1
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2022年3月30日
Arxiv
12+阅读 · 2021年11月1日
Adaptive Synthetic Characters for Military Training
Arxiv
50+阅读 · 2021年1月6日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
10+阅读 · 2022年3月30日
Arxiv
12+阅读 · 2021年11月1日
Adaptive Synthetic Characters for Military Training
Arxiv
50+阅读 · 2021年1月6日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员