The regulator theorem states that, under certain conditions, any optimal controller must embody a model of the system it regulates, grounding the idea that controllers embed, explicitly or implicitly, internal models of the controlled. This principle underpins neuroscience and predictive brain theories like the Free-Energy Principle or Kolmogorov/Algorithmic Agent theory. However, the theorem is only proven in limited settings. Here, we treat the deterministic, closed, coupled world-regulator system $(W,R)$ as a single self-delimiting program $p$ via a constant-size wrapper that produces the world output string~$x$ fed to the regulator. We analyze regulation from the viewpoint of the algorithmic complexity of the output, $K(x)$. We define $R$ to be a \emph{good algorithmic regulator} if it \emph{reduces} the algorithmic complexity of the readout relative to a null (unregulated) baseline $\varnothing$, i.e., \[ \Delta = K\big(O_{W,\varnothing}\big) - K\big(O_{W,R}\big) > 0. \] We then prove that the larger $\Delta$ is, the more world-regulator pairs with high mutual algorithmic information are favored. More precisely, a complexity gap $\Delta > 0$ yields \[ \Pr\big((W,R)\mid x\big) \le C\,2^{\,M(W{:}R)}\,2^{-\Delta}, \] making low $M(W{:}R)$ exponentially unlikely as $\Delta$ grows. This is an AIT version of the idea that ``the regulator contains a model of the world.'' The framework is distribution-free, applies to individual sequences, and complements the Internal Model Principle. Beyond this necessity claim, the same coding-theorem calculus singles out a \emph{canonical scalar objective} and implicates a \emph{planner}. On the realized episode, a regulator behaves \emph{as if} it minimized the conditional description length of the readout.


翻译:调节器定理指出,在一定条件下,任何最优控制器都必须包含被调节系统的模型,这奠定了控制器显式或隐式地嵌入被控对象内部模型的思想基础。该原理支撑着神经科学及预测性大脑理论(如自由能原理或柯尔莫哥洛夫/算法智能体理论)。然而,该定理仅在有限设定下得到证明。本文通过恒定尺寸的封装程序,将确定性、封闭、耦合的世界-调节器系统$(W,R)$视为单个自定界程序$p$,该程序生成输入调节器的世界输出字符串$x$。我们从输出算法复杂度$K(x)$的视角分析调节行为。若调节器$R$能相对于无调节基准$\varnothing$降低读数的算法复杂度,即满足\[ \Delta = K\big(O_{W,\varnothing}\big) - K\big(O_{W,R}\big) > 0 \],则将其定义为\emph{优良算法调节器}。我们进而证明:$\Delta$值越大,具有高互算法信息的世界-调节器对越受青睐。更精确地说,复杂度间隙$\Delta > 0$导致\[ \Pr\big((W,R)\mid x\big) \le C\,2^{\,M(W{:}R)}\,2^{-\Delta} \],使得低$M(W{:}R)$值随$\Delta$增长呈指数级不可能。这是“调节器包含世界模型”思想的算法信息论版本。该框架无需预设分布、适用于个体序列,并与内部模型原理形成互补。超越这一必要性论断,相同的编码定理演算导出了\emph{规范标量目标函数}并隐含\emph{规划器}的存在。在已实现的交互过程中,调节器的行为\emph{如同}最小化了读数的条件描述长度。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
69+阅读 · 2022年9月7日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
49+阅读 · 2021年9月11日
Arxiv
31+阅读 · 2021年6月30日
VIP会员
相关VIP内容
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关论文
Arxiv
69+阅读 · 2022年9月7日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
49+阅读 · 2021年9月11日
Arxiv
31+阅读 · 2021年6月30日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员